Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

ANL/MCS-TM-249

MACE 2.0 Reference Manual and Guide

by

William McCune

Mathematics and Computer Science Division

Technical Memorandum No. 249

May 2001

This work was supported by the Mathematical, Informatiord @omputational Sciences Division sub-
program of the Office of Advanced Scientific Computing Reslead).S. Department of Energy, under
Contract W-31-109-Eng-38.

Argonne National Laboratory, with facilities in the statédllinois and Idaho, is owned by the United
States Government and operated by The University of Chicager the provisions of a contract with
the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored bgemcy of the United States Govern-
ment. Neither the United States Government nor any ageecgdh nor The University of Chicago, nor
any of their employees or officers, makes any warranty, esgaoeimplied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefis of any information, apparatus, product,
or process disclosed, or represents that its use would fritge privately-owned rights. Reference
herein to any specific commercial product, process, or setwy trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply fitdoesement, recommendation, or favoring
by the United States Government or any agency thereof. Tevesvéind opinions of document authors
expressed herein do not necessarily state or reflect thdke biited States Government or any agency
thereof, Argonne National Laboratory, or The Universityafficago.

Contents

Abstract 1
1 Introduction 1
2 A Little Motivation 1
3 How to Tell MACE What to Do 2
3.1 TheFormulas e 3
3.2 Constraintsinthelnput e e 3
3.3 Command-Line Options e e 4
4 Language Accepted by MACE 5
4.1 DifferencesfromOtter'sLanguage i e 5
4.2 A Quick Review of the Language Otter Acceptsccoet v v o oo L 5
5 How MACE Works 6
6 Differences from Previous Versions 7
7 Calling MACE From Other Programs 8
8 The ANLDP Propositional Decision Procedure 9

References 10

MACE 2.0 Reference Manual and Guide

William McCune

Abstract

MACE is a program that searches for finite models of first-oefatements. The statement to
be modeled is first translated to clauses, then to relatidaases; finally for the given domain size,
the ground instances are constructed. A Davis-Putnamiaiogd ogeman procedure decides the
propositional problem, and any models found are transkatédst-order models. MACE is a useful
complement to the theorem prover Otter, with Otter searcifam proofs and MACE looking for
countermodels.

1 Introduction

MACE (Models And CounterExamples) is a program that searétresmall finite models of first-order
statements. It is frequently used along with our first-oridherorem prover Otter [5, 4], with Otter
searching for proofs and MACE looking for countermodelse Tlo programs accept almost the same
language, so the same input file can usually be used for bogrgms.

MACE has been used for many applications including quasigexistence problems [3], ortholat-
tice problems [6], and lattice and Boolean algebra problgtn8]. Other successful programs that look
for finite models of first-order statements are SEM [11] andBER [10]. A related class of programs
can produce finite models when the search for a refutatide fakamples of these are SATCHMO [2]
and MGTP [1].

Atits core, MACE has a Davis-Putnam-Loveland-Logeman psiional decision procedure named
ANLDP. ANLDP can be used directly to decide propositionahT¥ problems given in conjunctive
normal form (see Section 8). Section 6 gives differencewden MACE 2.0 and previous versions.
The MACE Web siteidit t p: / / ww. nts. anl . gov/ AR/ nace.

2 A Little Motivation

Say you've just invented group theory by writing down thddwling three axioms,
EXT =2
glz)xz=e
(xxy)xz=ax*(y*z)

and you are wondering whether all groups are commutative.prepare the following input file, named
group.in.

set (aut o) .
list(usable).

e * X = X. % left identity
g(x) * x = e. % 1l eft inverse
(x *y) *z=x%* (y * z). %associativity
a*bl=>b* a % deni al of comutativity

Now you give the input file to Otter to search for a proof (atifua refutation).

% otter < group.in > group.out

and to MACE to look for a countermodel (actually a model) aksd, as follows.

% mace -n4 -p -c < group.in > group4. out
Both programs fail immediately. But looking at the Otterpuitmakes you suspect that not all groups
are commutative, so you go forward, looking for larger cenmiodels. The command

% mace -n6 -p -c < group.in > group6. out

succeeds, and the output file contains the following noncotative group of order 6.

—==—=—=—=====—==—=—==—======== \bdel #1 at 1.13 seconds:

e: 0

a: 1

b: 2

* | 012345
o,
O] 012345
1] 1032514
2|1 240513
3] 351402
4] 425031
51 534120

g 012345

Hmmm, very interesting: | wonder what happens if we addr — e to our theory.

3 Howto Tell MACE What to Do

Three kinds of input determine how MACE works. First, thauglas or formulas in the input file specify
the theory for which you seek a model. Second, special codmamthe input file put constraints on
the models. Third, command-line options give general cairgs on the search.

3.1 The Formulas

MACE reads the input (from stdin) and takes formulas andsgaurom the listsisabl e, sos, de-
modul at or s, andpassi ve as its basic theory. Like Otter, MACE immediately transforms any
first-order formulas to clauses.

MACE is a bit more restrictive than Otter in the language @teqats, and it interprets some symbols
differently. See Section 4.

3.2 Constraints in the Input

Constraints are specified in an optional fisice_const r ai nt s in the input file? (If you give Otter
an input file containing arace_const r ai nt s list, Otter ignores it.) Two kinds of constraint are
accepted: assignments for the models and properties dioredeor functions. Here is an example list
that shows all of the types of constraint.

list(nmace_constraints).

assign(e, 0). % const ant synbol
assign(g(2), 1). % functi on symnbol
assign(3*4, 2). % f uncti on synbol
assign(P(1), T). % rel ation symnbol
assign(Q0,3), F). % rel ation symnbol

property(same(_,), equality).
property(lt(_,_), order).
property(g(_), bijection).

property(_*_, quasigroup).
end_of [|ist.

The assignments simply give function values or relatiomeslifor particular members of the domain.
Members of the domain are always nanted, ... ,n — 1, wheren is the domain size. The Boolean
constants (relation values) are nanieandF. Note that assigning values to constants can also be done
with the- ¢ command-line option (see the next subsection). The folgwiroperties of function and
relation symbols can be specified in tiece_const r ai nt s list.

equality
This applies to binary relation symbols. It is necessary @& nonstandard equality symbol
is being used, because any binary relation recognized bgr @ an equality symbol is also
recognized by MACE as an equality symbol. See Section 4.2.

or der
This applies to binary relation symbols. It is necessary drd nonstandard order symbol is being
used. MACE (but not Otter) automatically recognizes binargs an order relation. The “order”
is the obvious order on the members of the dom@ir: 1 < ... < n — 1. See the example input
filesor dered_semni . i n andcd. i n included in the MACE distribution package.

'One can argue that the hot list should also be considerediasfiae basic theory, because Otter uses the hot list to make
inferences. MACE ignores the hot list, however, becausésiaiauses almost always occur also in usable or sos, anGBIA
suffers if it gets duplicate clauses. | suppose MACE coulthageund this by doing a subsumption check.

2Previous versions of MACE used tpassi ve list for constraints.

3Why not place assignments in with the clauses that speafstibory? This can be done, but such assignments might not
make sense if the input is also being used for Otter.

bijection
This applies to unary function symbols. The list of functi@mues is a permutation of the domain.

qguasi group
This applies to binary function symbols. If you write dowmttable for a finite quasigroup, each
row and each column is a permutation of the domain.

3.3 Command-Line Options

-Nn

n

This gives the starting domain size for the search. The #tefalue is 2. If you also give
an- Noption, MACE will iterate domain sizes up through thid value. Otherwise, MACE
will search only for the n value. For example,

Options Search
-n4 4
- N6 2,3,45,6
-n4 -N6 45,6

This gives the ending domain size for the search. The ddfatkie value of the n option.

This says that constants in the input should be assignedieeigments of the domain. If
the number of constants in the input is greater than the dogiaén, the firstn constants

are given values, and the rest are unconstrained. This isfalugption because it elimi-
nates lots of isomorphism from the search. But it can blotknaldels, especially when
used with other constraints.

(Lower case.) This option tells MACE to print models in a niabular form as they are
found. This format is meant for human consumption.

(Upper case.) This option tells MACE to print models in anilggsarsable form. This
format has an Otter-like syntax and can be read by most Psylstgms.

This option tells MACE to print models in IVY form. This forrhés a Lisp S-expression
and is meant to be read by IVY [9], our proof and model checker.

This tells MACE to stop after finding models. The defaultis 1.

This tells MACE to stop after aboutseconds. The defaultis unlimite®lACE ignores any
assi gn(max_seconds, n) commands that might be in the input file. Such commands
are used by Otter only.

This tells MACE to stop if it tries to allocate more tharkilobytes ofmemory. The default
is 48000 (about 48 megabyteIACE ignores anyssi gn(nax_nem n) commands
that might be in the input file. Such commands are used by Ouigr

This is a special-purpose constraint designed to reduceagzhism in quasigroup prob-
lems. It applies only to binary function See [3].

This tells MACE to print a summary of these command-line apsi

4 Language Accepted by MACE

MACE accepts nearly the same input as Otter. First we listiiha differences from Otter; then we
give a short review of Otter’s language.

4.1 Differences from Otter’'s Language

1. MACE does not accept function symbols with arity greabemtthree or relation symbols with
arity greater than four.

2. MACE does not allow symbols with different arities, forample,f (f, x) .
3. MACE does not allow a symbol to be used as both a relatiorbsyand a function symbol.

4. MACE ignores answer literals. In fact, MACE removes albaegr literals before it starts looking
for models.

5. The natural numbei®, 1, 2, ... are ordinary constants to Otter, but they have special mean-
ings to MACE. In particular, MACE interprets them as elensarftthe domain. If you ask MACE
to look for a model of sizex, and there are constantsn in the input, MACE will get confused
and quit with an error message.

6. On the other hand, the evaluable (“dollar”) functions esldtions, for exampl&SUMand$LT,
have special meanings to Otter, but they are treated by MAC& dinary symbols. As a result,
an input file containing evaluable symbols can produce ba#fgation with Otter and a model
with MACE. Here is an example.

set (hyper _res).
list(sos).
-P(x) | P($SUM x, X)) .
P(1).
-P(2).

4.2 A Quick Review of the Language Otter Accepts

See the Otter manual [5] for a thorough description of thglage.

Clauses vs. Formulas. You can use either clauses or formulas. (Most people ussetauf you use
formulas, they are immediately translated to clauses. ldex some corresponding examples.

list(usable). % cl auses
-P(x) | -Qx) | R(x).
-P(x) | -Qx) | S(x).
f(e,x) = x.
f(g(x),x) = e.
end_of [|ist.

formul a_list(usable). % f or mul as

all x (P(x) & Qx) -> R(x) & S(x)).
exists e ((all x (f(e,x) =x)) &
(all x exists 'y (f(y,x) =¢€))).
end_of [|ist.

Variables vs. Constants in Clauses. Clauses do not have explicit quantifiers, so we need a rule to
distinguish variables from constants. The default ruleh&t symbols starting withu throughz are
variables. If the commandet (prol og_styl e vari abl es) is in effect, symbols starting with
upper-case letters are variables.

Equality Symbols. How do we recognize binary relations as equality relatiomg® default rule is
that the symbok and symbols matching the patterBe][Qq].* are equality symbols. If the input
contains the commarsket (t pt p_eq) , thenequal is the one and only equality symbol.

Infix Notation. One can declare binary symbols to be infix and to have a pracedad associativity
so that some parentheses can be omitted. Many symbols secinad have built-in declarations.

5 How MACE Works

The methods used by MACE are described in detail in [3]. Heeesummary.

For a given domain size, MACE transforms the (first-ordepuininto an equivalent propositional
problem. This is possible because, for a fixed finite doméia first-order problem is decidable. The
propositional problem is then given to a DPLL (Davis-Putramveland-Logeman) procedure. If sat-
isfiability is detected, the propositional model is tramsfed into a first-order model of the original
problem.

Consider the following input file.

list(usable).
even(a) .
-even(x) | even(s(s(x))).
-even(s(a)).

MACE first flattens the clauses into a relational form. Thepshvolves replacing eacltary function
with ann + 1-ary relation. MACE's output for this example contains somieg like

Processing clause: -a(v0) | even(vO0).
Processing clause: -s(v0O,vl) | -s(vl,v2) | -even(v0) | even(v2).
Processing clause: -a(v0) | -s(v0O,vl) | -even(vl).

If we ask for models of size 3, MACE generates propositiotealges corresponding to all instances of
the transformed clauses over the §@&f1,2}. The output also contains the statements

Function s/2 well-defined and cl osed.
Function a/1 well-defined and cl osed.

which indicate that MACE has generated propositional daussserting that the new-+ 1-ary rela-
tions are functions. The DPLL procedure finds a model of theobgropositional clauses, and the
propositional model is transformed into the following ficstler model.

a. 2 even: 01 2 S: 012

Scalability. Unfortunately, this method does not scale well as the donmaireases or as the size of
clauses increases. Consider a distributivity axiom(y + z) = (= + y) * (¢ 4+ z). The transformation
to relational form produces the following two clauses.

-+(vO0,vl,v2) -+(v0,v3,v4) -*(v4,v2,v5) -+(v3,vl,v6) *(vO, V6, v5)
-+(vO0,vl,v2) -+(v0,v3,v4) *(v4,v2,v5) -+(v3,vl,v6) -*(v0, V6, v5)

For a domain of 6, each of these (7-variable) clauses pradiice= 279,936 propositional clauses.
MACE can usually handle this many clauses, but it's hard tiotfaxponential behavior. The program
SEM [11] is usually better than MACE for large clauses or¢aggmains.

6 Differences from Previous Versions
Major changes from earlier versions of MACE are listed here.

1. Previous versions of MACE called Otter to parse the inptt® produce an intermediate form
that was given to a program named ANLDP. MACE 2.0 is self-aomd, making it easier to
install and run.

2. Previous versions of MACE worked for a fixed domain size] #mere was a separate script
(mace-loop) to iterate through domain sizes and calling MAC

3. Previous versions of MACE used Ottepassi ve list for constraints (assignments and proper-
ties). MACE 2.0 uses the new lisece_const r ai nt s for that purpose; clauses passi ve
are now taken as part of the theory.

4, MACE 2.0 allows answer literals in the clauses. (Answerdils are removed by MACE before
the search for models.)

5. Previous versions of MACE could handle sorted logic (wigjoint domains). MACE 2.0 cannot.
Most of the code for sorted logic is still in place, so it is pife that future versions will handle
sorted logic.

Sorted logic can sharply cut down the search time. Considirmaain of size 12 that can be

partitioned into 8 and 4. A 2-variable relational clausetfvane variable for each sort, produces
144 propositional clauses with unsorted logic and 32 clairs¢he sorted case. Let us know if

you need sorted logic.

6. Previous versions of MACE had a checkpointing featurerelne the state of the search was
periodically backed up to a file, and the search could be redifrom one of those states. MACE
2.0 does not have this feature.

7 Calling MACE From Other Programs

MACE returns an exit code when it terminates. This makes fiveaient to call MACE from other
programs. Here is a list of MACE'’s exit codes. (This list chas from time to time; the current list can
be found in the source filkhce. h.)

11 (ABEND_EXI T) This usually indicates an error in the input (not all inpubes are covered by
| NPUT_ERROR_EXI T below). Occasionally it is caused by a bug in MACE. When youtlgis
exit code, look in the output for an error message.

12 (UNSATI SFI ABLE_EXI T) MACE completed its search and determined that no model$ exis
within the given domain size(s) and other constraititdoes not mean that the input clauses are
unsatisfiable.

13 (MAX_SECONDS_EXI T) MACE terminated because of the time limit given on commame li
(with - t).

14 (MAX.MEMEXI T) MACE terminated because of the memory limit given on the camdnline
(with - k).

15 (MAX_MODELS EXI T) MACE terminated because it found the number of models regdesn
the command line (with m).

16 (ALL_MODELS_EXI T) MACE completed its search and found all models (at least widin
the given constraints.

17 (SI A NT_EXI T) MACE terminated because it received the interrupt signal.
18 (SEGV_EXI T) MACE crashed.
19 (I NPUT_ERROREXI T) Errors were found in the input. The output file should pointhe

error(s).

Say we have a list of equations containing a binary functionisl f , and we wish to remove the
equations that have a noncommutative model of siz¢. If we put the equations in a file, with one
equation on each line, for example,

fFOE(x, f(F(z,x),x)), f(z,f(y, x)))
FOE(E(x f(z,%x)),x),f(z,f(y,x)))
fFOECE(T(y,x),2),x),f(f(u,y),x))

I
N

we can write a simple program to loop through the equaticaiéng MACE for each and printing those
that have no noncommutative models of sizd. Here is an example Perl program that does the job.

#!/usr/local/bin/perl5

$mace = "/home/ nccune/ bi n-1i nux/ mace"; # MACE binary
$unsatisfiable exit = 12; # exit code of interest
$i nput = "/tnp/ mace$s$"; # tenporary input file
while ($equation = <STDIN>) {
open(FH, ">$input") || die "Cannot open file $input"”;
print FH "list(usable). $equation f(0,1)!=f(1,0). end_of_list.\n";
cl ose(FH);
$rc = systen("$mace -N4 < $input > /dev/null 2> /dev/null");
$rc = $rc / 256; # This gets the actual exit code.

if ($rc == S$unsatisfiable_exit) { print $equation; }

If our data file is named dentiti es and our Perl script is namexbnmut e4_fi |l t er, then the
command

% commuted filter < identities > candi dates

will remove two of the four equations within a few seconds.

8 The ANLDP Propositional Decision Procedure

If you have a propositional (SAT) problem in conjunctive mat form, you can call MACE’s DPLL
procedure directly with the program ANLDP. ANLDP is inclutie the MACE distribution package.

Input to ANLDP is a sequence of integers (no comments arevallp. The propositional variables
arel, 2,3, Positive integers are positive literals, negative integee negative literals, and
0 marks the ends of clauses. For example, here is an (urshl#finput consisting of four 2-literal
clauses.

120
1-20
-120
-1 -20

The command-line options of ANLDP are a subset of MACE's:

-p (Lower case.) This tells ANLDP to print models as they arenfibu
-m n This tells ANLDP to stop after finding models. The defaultis 1.
-t n This tells ANLDP to stop after aboutseconds. The default is unlimited.

-k n This tells ANLDP to stop if it tries to allocate more thankilobytes of memory. The
default is 48000 (about 48 megabytes).

-S This tells ANLDP to perform unit subsumption as it searcl{elsit subsumption is always
performed on the input.) When ANLDP gets a new unit (by Splitor by unit propaga-
tion), two operations are ordinarily performed: (1) ungahition, to remove complemen-
tary literals from all clauses, and (2) unit subsumptionmark as subsumed all clauses

9

containing the unit as a literal. Because of our data strastwnit subsumption nearly
always costs more time than it saves. But this option allawstg use unit subsumption if
you wish.

ANLDP is an implementation of the Davis-Putnam-Lovelamaieman procedure. Efficient data
structures and algorithms are used, but the procedure ésveite standard. When the time comes to
select the next propositional variable for splitting, ANBBimply takes the first variable of the first
shortest positive clause. Details of the implementationtzafound in [3].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

H. Fujita and R. Hasegawa. A model generateion theoremgorin KL1 using a ramified-stack
algorithm. InProceedings of the Eighth International Conference on tdyyjogrammingpages
535-548, 1991.

R. Manthey and F. Bry. SATCHMO: A theorem prover implerteshin Prolog. In E. Lusk and
R. Overbeek, editorfroceedings of the 9th International Conference on Autesh&teduction,
Lecture Notes in Computer Science, Vol. 3ifiges 415-434, Berlin, 1988. Springer-Verlag.

W. McCune. A Davis-Putnam program and its applicatiofiriite first-order model search: Quasi-
group existence problems. Tech. Report ANL/MCS-TM-194dme National Laboratory, Ar-
gonne, IL, May 1994.

W. McCune. Otterht t p: / / ww. nts. anl . gov/ AR/ ot ter/, 1994.

W. McCune. Otter 3.0 Reference Manual and Guide. TecpoReANL-94/6, Argonne National
Laboratory, Argonne, IL, 1994.

W. McCune. Automatic proofs and counterexamples for samtholattice identitiednformation
Processing Letter$5:285-291, 1998.

W. McCune and R. Padmanabhatwtomated Deduction in Equational Logic and Cubic Curves
volume 1095 of_ecture Notes in Computer Science (Al subserigpjinger-Verlag, Berlin, 1996.

W. McCune and R. Padmanabhan. Automated deduction iatamal logic and cubic curves.
http://ww. nts. anl . gov/ horme/ nccune/ ar / nonogr aph/ , 1996.

[9] W. McCune and O. Shumsky. IVY: A preprocessor and proafalter for first-order logic. In

[10]

[11]

M. Kaufmann, P. Manolios, and J Moore, editdBamputer-Aided Reasoning: ACL2 Case Stud-
ies, chapter 16. Kluwer Academic, 2000.

J. Slaney. WDER, finite domain enumerator: Version 1.0 notes and guide. .TRelport TR-
ARP-10/91, Automated Reasoning Project, Australian NtidJniversity, Canberra, Australia,
1991.

J. Zhang and H. Zhang. SEM: A system for enumerating nsoda Proceedings of the Interna-
tional Joint Conference on Artificial Intelligencklorgan Kaufmann, 1995.

10

